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Steady two-dimensional flow of a viscoelastic fluid past a
streantined cylinder is numerically modeled using the von Mises coor-
dinates. The governing equations for a second -order fluid flow past the
rylinder are first transformed into a sreamfunction coordinate system
(. @), where g is the streamlunction of the flow. Taking ¢ — x, the von
Mises coordinates (x, @) are obtained and the governing equations
reduced to a system of two equations in two unknowns y{x, @) and
a/{x. yr) which are solved subject to the appropriate boundary condi-
tions in the von Mises computational domain. Several approximation
formulas for the vorticity on the surface of the cylinder are derived and
employed in obtaining the solutions at various Reynolds and Weissen-
berg numbers for two specific cross sections. € 1993 Academic Press, Inc.

L INTRODUCTION

The modelling of Tow past submerged bodies constilutes
an impertant class of problems which has and continues to
receive much attention. Many methods exist to obtain the
solution to such problems [1-3]. However, the need to
improve the mathematical formulation as well as the
method of solution is always present. In this paper, we
present a method that is well suited for studying flow past
a cylinder before separation of flow occurs. This method
offers several computational advantages in its formulation
of this problem, both for Newtonian and non-Newtonian
flows.

The idea for this method orginated Trom Martn's [4]
theoretical study of steady viscous incompressible flows,
He introduced a streamfunction coordinate system {¢, ),
where the coordinate i is taken as the streamfunction of the
flow while the coordinate ¢ is at first left arbitrary. Since the
fluid moves along the streamlines, the (¢, ) coordinate
system is a natural choice for the application of theoretical
analysis or numerical computations. These coordinates
reduce to von Mises [ 5] coordinates i the arbitrary family
of curves ¢y, v)=constant is chosen to be x =constant.
Barron [6] made this choice in a study of plane potential
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incompressible flow over symmetric airfoils. The von Miscs
transformation easily maps the flow region of ow past a
cylinder inio a rectangular domain in the computational
plane {x, i} suitable lor finite differencing.

The use of coordinale transformation is common in the
study of a variety of non-Newltonian flows especially of flow
past submerged bodics. Pilute and Crochet [1] employed
orthogonal curvilinear coordinaltes in considering the plane
flow of a viscoelastic flmd past circular and elliptical cylin-
ders taking inertia effects into account while Dairenieh and
McHugh [7] neglected inertia eflects in studying the
axisymmetric flow of second- and third-order fluids past a
spheroidal body using several coordinate systems. More
recently, Andre and Clermont [8] reconsidered the die
swell problem, employing a change of variables using
strecamlines to transform an irregular physical domain into
a reclangular one.

In this paper, we consider the steady plane llow of a
second-order fluid past a cylinder of streamlined cross sec-
tion. This problem is formulated in von Mises coordinates
and the mathematical difficulties arising from the nonlinear
governing equations necessitates the use of numerical
methods to solve these equations. We also consider the
combined effect of the nonlinear inertia terms and the non-
linear terms in the viscosity part of the constitutive equation
for the second-order Muid in order to study how the viscous
flow is affected by a slight elasticity of the fiuid. Since
second-order NMuid Mow reming valid as long as the corre-
sponding Newlontan llow is only slightly perturbed, the
solutions obtaingd make sence only if they do not differ con-
siderably [rom the Newtonian solutions, which is actually
the case. In the von Mises formulation, the vorticity on
no-stip boundaries is not known a priori. Thercfore, the
vorticity values on these boundaries must be determined by
some approximation formulas. We have derived a number
of vorticity approximation formulas in von Mises coor-
dinates.

The plan of this paper is as follows: in Section 2, the
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equations governing steady, plane, incompressible flow of a
second-order fluid are written in two suitable forms. The
first form is when «, v, and p are the dependent variables in
the physical plane (x, »). The second form is when (¢, ¢/),
h(é, ), and the three metric coefficients of the natural net
(¢, ) are the dependent variables. In Section 3, we employ
von Mises coordinates by choosing ¢ = x to obtain a system
of two equations in two unknowns y(x, ¢ ) and w(x, ¢ ). The
appropriate boundary conditions for the flow past a cylin-
der of streamlined cross section are prescribed on the von
Mises computational domain and various approximation
formulas for the vorticity on the surface of the cylinder are
also derived in this section. In Section 4, the numerical
method of solution is presented. In the final section, a num-
ber of vorticity approximation formulas are employed in
obtaining the numerical solutions at various Reynolds and
Weissenberg numbers for two specific cross sections and the
results obtained are discussed.

2. EQUATIONS OF MOTION

The steady plane incompressible flow of a second-order
fluid in the absence of body forces is governed by

u,+v,=0 (1)

pla, +ou,)+ p,
= ,U,' V2u + rxl [u(vzu)x + u(Vzu)y

+u, Vu+o Vol + 108, + 20,){14,1%) . (2)

pluv, +vv, )+ p,
= u V2o + o, [u(V?0)  + 0(V?p),

+u, Vi o, Vol + 1 (3, +22,){]4,1%},, (3)
where 1 and v are the horizontal and vertical components of
velocity, respectively, p is the fluid pressure, p is the fluid
density, g is the coefficient of viscosity, «, and «, are
material constants, V* is the Laplacian operator, and |4, |?
is given by

IIA 1 '2 =4(ux)2 +4{U_v}2 + 2(”)! + Ux}z'

A second-order fluid may be considered as the limit of a sim-
ple fluid for small natural times. The first- and second-order
equations of the well-known nth-order Rivlin-Ericksen
equations of state are, respectively, the constitutive relations
of a Newtonian and second-order fluid. When the flow is
slow and slowly varying and the fluids under consideration
are only slightly elastic, the second-order equation can be
used with a certain degree of confidence. Dunn and
Fosdick [9] found that if a second-order fluid is to be com-
patible with thermodynamics in the sense that all motions of
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the fluid meet the Clausius—Duhem inequality and the
assumption that the specific Helmholtz free energy of the
fluid will be a minimum when the fluid is in equilibrium,
then the material constants which characterize the fluid
have to satisfy the following restrictions [9]:

w=0,

o, =20, 2 +o,=0.

Equations (1} to (3) form a system of three equations in
three unknowns u(x, y), v(x, ¥}, and p(x, y).

Defining an energy function A(x, ) and vorticity function
wix, y) by

w=v,—u,

(4)
h=p+ 3o’ +0?) - a,(u Viu+v V)

*%(3%‘*’20‘2) 11‘11|2 (5)

and non-dimensionalizing with respect to a characteristic
length I and speed U/, the flow equations in non-
dimensional form are

Uyt 0,=0 (6)
Reh,—Revo+w,+Weov Vo =0 (7
Reh, +Reuw —w,— WeuVar=0 )

VU, =0, (9}

where Re=plU_ L/y is the Reynolds number and We =
oy U /uL is the Weissenberg number. The We number is
the ratio of elastic effects to viscous effects. In view of the
limitation on the second-order fluid model, the flow features
obtained for such a fluid remains valid provided the We
number is less than unity. Equations (6} to (9) form a
system of four equations in four unknowns u(x, ), v(x, y),
w(x, ¥), and A{x, y).
Equation (6) implies the existence of a streamfunction
¥{x, ) such that
'j’x= -1 II’}_\':H' (10)
We take ¢(x, y)=const to be some arbitrary family of
curves which generates with the streamlines Jv(x, y) = const,
a curvilinear net (¢, ¢) so that in the physical plane the
independent variables x, y can be replaced by ¢, . Let
x=x(4, %

y=yig,¥) (11)

define the curvilinear net with the squared element of arc
length along any curve given by

ds = E(¢, ) d” + 2F(¢, ) d di + G(¢, ) dy,
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wherein

E=x,+y}, F=x4x,+ V4V, G=xi+ 5.
Equation (11) can be solved to obtain ¢=¢(x, ¥) and
Yr=1ur(x, v} such that

x¢=dr\[’y, y¢=_"]¢’xs

x¢=_J¢)’9 y\(’i:‘]¢x

where

J=.’(¢y¢,—x¢y¢= i\IEG_Fz

is the transformation Jacobian and 0 < |/ <. Here we
assume that the fluid flows along streamlines i = const in
the direction of increasing ¢ so that J >0 (cf. Martin [4]).

Kaloni and Siddiqui [ 107 transformed Eq. (7} to (9) into
the {¢, ¢) coordinates and obtained

F E
Reh¢='—’m¢—jww

F
}w¢—Rew+WeV1w

“’%[@aﬁ‘(?)w]
(2ri), (2,

1| /Gw,— Fo —Fo,+ Ew
2y = id ¥ ¢ ¥
Ve J[( J )ﬁ( 7 )J

Equations (12) to (15) are four partial differential equations
in five unknowns E, F, G, h, and w as functions of ¢ and .

Having determined a solution of this system, the flow
in the physical and the hodograph plane is described by
{cf. Martin [47])

G
Re hy,,==7w¢—

[Edg+{(F+ilydy],

-4
o= ifzd-%rzd]
[Glrids+riap

JE

u+iv=qge™ = N e”,

2

g=/u’+0v’

+ v~

The pressure in the physical plane is determined by Eq. (5).

The system of Egs. (12) to (15) is under determined due
to the arbitrariness of the curves ¢ = const. This system can
be made determinate in a number of ways by fixing these
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curves. The appropriate choice of ¢ depends on the problem
under consideration. Barron [6], in a study of plane irrota-
tional flow past bodies chose ¢ = x, obtaining the von Mises
coordinate system (x, ). The formulation of the problem of
flow past submerged bodies in the von Mises plane offers
several computational advantages. Therefore, we transform
and solve the equations governing the flow of a second-
order fluid past a cylinder in the von Mises plane subject to
the appropriate boundary conditions.

3. VON MISES FORMULATION

The {low past a cylinder in a second-order fluid is
governed by the system of Eqgs. (12) to (15). In the von
Mises coordinates (x, i), we have ’
E=1+yi, F=y,v,, G=y,, J=y,. (16
Employing (16} in Egs. (12) to (15) with ¢ = x and applying
the integrability condition A, =h;,, the governing
equations in the von Mises plane are given by

Viteat U+ 1) =Dy rp=yo0 (17

Vp@eet (14 p3) Vi, =2y, 0.y — yywo,
—Re yi o, +Wely, @ — 2V, V50,
+ (14 i) ye@ype
F 2y Y — 2y Ve — VW) 0y
— Y@@y + (205 Py Vi = 21+ ¥3) yoy) 044, 1=0.
(18)

Equation (15) is identically satisfied assuming y.,=v,..
The system of two nonlinear partial differential equations
(17) and (18) in two unknowns yp{x, ¥} and w(x, )} is
solved numerically with the appropriate boundary condi-
tions for y and w. Having obtained y(x, i), the horizontal
and vertical velocity components in the von Mises variables
are given by

1 ¥

uzdly=__': b= _‘px=‘x=“y,r (]9)

Since vy, = yy., it follows that u(x, ) and o{x, ¥} also
satisfy

u,+uvy, —uvu,=0. (20)

Boundary Conditions

We consider the steady uniform flow of a second-order
fluid over an infinite cylinder of arbitrary streamlined cross
section. We assume that any cross section of the cylinder
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parallel to the (x, y) plane is symmetric with respect to the
x-axis with the upper half given by y = f(x) and the flow at
large distance from the cylinder is a uniform stream parallel
to the positive x-direction as shown in Fig. 1. The flow is
also assumed to be symmetric over the cylinder with respect
to the x-direction and, therefore, we consider only the upper
half of the physical plane. This flow region maps into the
upper half of the von Mises plane. A rectangular computa-
tional domain is chosen in the (x, ) plane and the
appropriate boundary conditions for v and o prescribed on
ali four sides as shown in Fig. 2. The boundary conditions
for y and w are as follows:

Boundary Conditions for y{x, \}t)

Left boundary (upstream), y =
Top boundary (¢ =y, ), y=¥

Bottom boundary {x-axis),

-~ {f(x),
y=

0, x<Xxpand x> x,p

X, SXEXyp

Right boundary (downstream), y,,, = y, @

(assuming v, < y, along this boundary).

Boundary Conditions for o(x, i)
Left boundary (upstream),
Top boundary (yr = ,,..,),

w=0
=0

Right boundary {downstream), @w,=0

Bottom boundary (x-axis),

L2 2
_ —s (W4}, X, SX<Xy
0, x<xpand x> x,.

The conditions at the exit (right boundary) comes from
the observations that the vorticity far from the body is

v4

/kl(z)

zL T

FIG. 1,

v

Physical plane.

581710823
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¥ .
y=¥ w=0
y=¥ Yoo = Y
w=0 we =0
T >
y=10 w=D L ¥ = f(z) Tr ¥ =0 w=] z

FIG. 2. Computational domain and boundary conditions.

concentrated in a thin streak downstream with maximum
strength inversely proportional to the distance and the
variation of the dependent variable y in the x-direction is
much [ess than that in the y-direction along this boundary.
Therefore, the appropriate exit condition for the vorticity is
obtained by equating the values of @ on the last two grid
lines. Noting that y, <€y,, (17} yields the boundary
condition for y at the exit.

Vorticity Approximation Formulas

The approximation formula for the vorticity on the sur-
face of the cylinder is derived as follows; employing Eq. (19)
in Eq. (17), we obtain

v vt
olx, )= Ux—uuw—2vv¢,—; ux+—;u,,,.

(4,2)

4(i.1)

F
|
h
l 1,0}

FIG. 3. Typical grid points on and near the cylinder.

N
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Eliminating . using Eq. (20}, the vorticity is given by

m(x, ‘)[l)= Ue— % (qz)w;

where ¢> = u® + v is the speed of the flow. Since v =0 for
every x on the bottom boundary =0, the vorticity on the
surface of the cyiinder is given by

(X, 0)= —3(g%),. {21)

To solve Eqgs. (17) and (18) numerically, the rectangular
domain in the (x, i) plane is covered by a uniform
rectangular grid of width & i the x-direction and h in the
W-direction. Various first- and second-order formulas of
Eq. {21} can be obtained by considering Taylor's series
expansion at internal grid points. A typical grid point (i, 0)
on the surface of the cylinder and the adjacent internal
points (i, 1) and (i, 2) are shown in Fig. 3.

Expanding ¢° at the internal grid points about {i, 0), we
have

2

h
(‘]2):;1 = (qz)i.() + h[(qz)w]:'.0+_ [(q2)|p¢]i.0+ o

5 (22)

(@)= (@)oo + Zh[(ql).;,].'_o + 2]’2[(92);&4’];’,0 + e (23)

Employing (21) in (22) and solving for w, 4, we obtain

l

~% (4% = (§%)i0] + O(h). (24)

W=

The no-slip condition on the surface of the cylinder reduces
Eq. (24) to

1
W= —ﬂ(qz)m (25)

which is a first-order approximation for the vorticity on the
surface of the cylinder. '

The derivation of (25) is similar to the derivation of
boundary vorticity approximation formulas in the stream-
function—vorticity formulation [11]. Subtracting (23) from
4 x (22) and solving for w, , yields a second-order formula
for the vorticity on the surface of the cylinder given by

o= — 57 1407 — (@)1 (26)

Similarly, various other second-order and higher order
approximation formulas can be obtained for the vorticity on
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the surface of the cylinder. Two other formulas of second
order are given by

1
Ty [9(92)5‘1 - (qz)“]

Wio= T3

{27

1
o= —5—[16(¢%);, —

i (4%):4) (28)

For convenience, we symbolically denote the boundary vor-
ticity expression given by (25) the (1, 1} formula, where the
first one indicates that it is a first-order approximation
involving the values of the speed of the flow at the first grid
points above the surface of the cylinder. Thus, Eq. (26) is
the (2, 1, 2} formula, Eq. (27) is the (2, 1, 3) formula, and
finally Eq. (28) is the (2,1,4) formula. We employed
various boundary approximation formulas in obtaining the
numerical solutions of our flow probiem.

4. METHOD OF SOLUTION

As stated, Egs. {17) and {18) are solved numerically on a
rectangular computational domain for y and w, respec-
tively. This domain in the (x, ) plane is covered by a
uniform mesh of width & in the x-direction and 4 in the
y-direction. Second-order accurate central difference for-
mulas are used to approximate all derivatives in (17} and
(18). A numerical solution for a given cross section of the
cylinder and value of Re and We is obtained by an overall
iterative procedure subject to the stated boundary condi-
tions. The iterative procedure used here is successive over-
relaxation (SOR). At any iteration level, Eq. (17) is solved
at every unknown gridpoint for y. Having obtained y, the
vorticity on the surface of the cylinder is calculated using
one of the formulas derived above. Equation (18) is then
solved for w at every internal grid point. This procedure is
repeated until y and @ have converged to limits, within an
acceptable tolerance, at every internal grid point and also at
every boundary grid point at which they are not known.
The solution procedure employed here is based on
obtaining the Newtonian flow solution first [7]. This
solution is then the starting point for the iterative procedure
to obtain the solutions for all We > 0. The vorticity values
on the surface of the cylinder are calculated directly using
the various approximation formulas. To reduce round-off
error, all computations are carried out in double precision.
Finally, in the overall iterative procedure, the criterion for
stopping iterations was a test on two consecutive values of
¥ and w; if the difference between two values was less than
10~% the computation was stopped.
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5. NUMERICAL RESULTS

We considered the flow over a cylinder of infinite length
for two different cross sections given by

y=f1{x)=02 /025~ x*

y=L0x)=01(1 = 2x) /1 —4x°.

For streamlined bodies such as the cylinders considered
here, separation of flow, if it occurs, does so near the rear of
the body and the consequent wake is narrow. Since for a
second-order fluid, separation of flow occurs at approxi-
mately the same Reynolds number as for a Newtonian fluid
[1], we have restricted our flow to very low Reynolds
numbers, before the development of a reverse flow region
behind the cylinders, so that the von Mises formulation can
be applied accurately to analyze the flow. At Re=40,
the results obtained suggest possibly that the effects of

<O —— DO

FIG. 4. The vorticity distribution over the surface of the cylinder
y=filx) for We =0,
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separation have become prominent and therefore higher
Reynolds numbers were not attempted.

After some investigation with the boundaries, the final
computational domain was chosen to extend from —5to 10
in the x-direction and from 0 to 4 in the y-direction. On
this demain, three grids of different densities were used,
151 x 41, 167 x 61, and 177 x 71. After checking the inde-
pendence of the solutions obtained to changes in the grid
sizes, it was found that the medium grid containing 167 x 61
points offered sufficient resolution for the Reynolds num-
bers constdered here and was used to calculate all the flow
quantities.

For Newtonian flow, the distribution of vorticity over
the surface of both cylinders obtained using the (2, 1, 2)
formula are shown in Figs. 4 and 5. The vorticity over the
surface of both cylinders obtained from the other approxi-
mation formulas showed similar distributions as in Fig. 4
and 5, decreasing monotonically with increasing Reynolds
number. Tt is, therefore, sufficient to give the minimum

L= DO =
'
)

-9 ¥
I

[

@

T T T

—
0.4 -0.2 0.q a.2 0.4 0.

53

FIG. 3. Distribution of vorticity over the cylinder surface y = f5(x) for
We=0.
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0 0 “
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)
-z i
-2
v v
0 0
R R
i i
I 1 -3
¢ <
L I
I T
¥ !
-3
-4 1
5]
E T T — T LA <|J
-1.0  -0.8 -G6 -0.a 0.2 0.0 0.2 0.4 0.6
X X
FIG. 6. The vorticity distribution over the surface of the cylinder Fig. 7. Distribution of vorticity over the cylinder surface y = f,(x) at
v=fi(x)yat Re=10. Re=10.
TABLE 1
Minimum Vortici'ty asa Function of Re and TABLE 1l
Approximation Formula
Minimum Vorticity as a Function of Re and We Numbers
Vorticity
Reynolds approximation Reynolds Weissenberg
number formula ¥y=Jfilx) y=f3(x}  number number r=[ix) y=filx)
10 2, 1,2) —4.461 5452 10 02 ~427 —524
(2,1,3}) —4.331 — 5237 0.5 —4.04 —4.98
(2.1, 4) —4.249 —5.115 Q0.8 —3196 —4.86
20 2,1.2) -53816 —7.263 20 0.2 ~5.39 ~6.73
(2,13 —5612 —6.934 0.5 —4.98 —6.21
(2,1, 4) —5.480 ~ 6,743 038 ~4.77 —593
30 (2,1, 2) —6.801 —8.619 30 0.2 —6.19 —7.81
2,1.3) —6.524 —8.183 0.5 —5.64 —T7.08
(2,1, 4) —6.343 —7926 0.8 535 —6.60
40 2,1.2) —7.620 —9.686 40 02 —6.79 —8.64
(2,1.3) —7.266 —9.147 0.5 —6.15 —7.77
(2,1,4 —7.035 ~8830 08 — 580 ~717
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FIG. 8. Streamlines for the cylinder y = f(x) at Re =10, We =0.2.
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FIG. 11, Streamlines for the cylinder y = f5(x) at Re =10, We=0.2.

FIG. 9. Streamlines for the cylinder » = f,(x) at Re =10, We =10.5.

FIG. 12. Streamlines for the cylinder y = f3(x) at Re = 10, We =0.5.

FIG. 10. Streamlines for the cylinder y = f,(x) at Re =30, We =0.8,

FIG. 13. Streamlines for the cylinder y = f,(x) at Re = 30, We=0.8.
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-3.15 -

—2.10 4

w .05

FI1G. 14. Distribution of vorticity in the physical plane (excluding the
cylinder y = fi{x)) at Re =30, We =0,

vorticity values on the surface of both cylinders as a
function of the Reynolds number for the second-order
formulas as shown in Table I. The values are in reasonable
agreement for both cylinders at lower Reynolds numbers
while showing a significant difference at Re = 40, indicating
possibly the onset of separation. Only second-order
formulas were emploved to approximate the surface
vorticity since the value of the speed at every internal grid
point is also second-order accurate.

Figures 6 and 7 show the distribution of surface vorticity
for both cylinders at various We numbers for a fixed
Reynolds number. In both cases, as the elasticity of the fluid
increases, the surface vorticity increases. A simiiar trend is
observed at all Reynolds numbers considered here as shown
in Table I1. All of the vorticity values have been obtained
using the (2, 1, 2) formula. It is also found that the higher
the We number, the higher the number of iterations
required to achieve convergence. An upper limit is reached
at about We =0.85 bevond which the numerical scheme
becomes divergent,

HUSAIN AND CHANDNA

— 315

- 2.10 4

- 1.0%

0.00
3

IR R
0

===

FIG. 15. Distribution of verticity in the physical plane (excluding the
cylinder y = f,(x)} at Re =30, We =0.5.

Having obtained y{(x,, ¥} at every grid point (i, f) in the
computational domain, the streamlines are easy to plot. To
obtain the streamline =y, the values of y are plotted for
all values of i and a fixed value of ;. Therefore, by varying j,
some or all of the strcamlines can be obtained. The
streamline profile for the cylinder y = f,(x) at Re =10 and
30 and various We numbers are shown in Fig. 8, 9, and 10.
No appreciable difference is observed between the
streamlines for Newtonian flow (solid lines) and that for
low We numbers in Figs. 8 and 9. The effect of the slight
elasticity of the fluid upon the velocity field is quite
noticeable at higher Re and We numbers as can be seen in
Fig. 10. The streamline patterns for the cylinder y = f.(x)
for various Re and We numbers are shown in Figs, 11, 12,
and 13. The same effect of elasticity on the velocity field is
observed here.

The distributions of vorticity in the physical plane are
shown in Fig. 14, 15, 16, and 17 for both cylinders. These
figures exclude the cylinders and show the vorticity distribu-
tion clsewhere in the computed flow domain. We observed
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=335

—2.10

= 1.05 1
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W

N \\\‘m\\\\\\\\\\\

FIG. 16. The vorticity distribution in the physical plane {excluding the
cylinder y = f5(x) at Re =30, We=10.

that non-zero vorticity is confined o the area adjacent to
the cylinders and in the downstream region as expected. As
the elasticity of the fluid increases, the vorticity increases
throughout the flow domain for both cylinders.

6. CONCLUSIONS

Steady viscoelastic fluid flow past streamlined cylinders
have been formulated in von Mises coordinates (x, ). The
governing equations consist of two equations in two
unknowns p(x, ) and w(x, ¥) which are solved subject to
the appropriate boundary conditions in the von Mises com-
putational domain. Various approximation formulas for the
vorticity on the surface of the cylinders have been derived
and employed in obtaining the solution. The von Mises
coordinates casily maps the physical plane into a rec-
tangular domain suitable for finite differencing. The main
limitation of this formuiation is that is cannot treat flows
after separation occurs and reverse flow regions develop in
the flow plane.

- 3.15

- 2.10 4

- 1.0%

FIG. 17. The vorticity distribution in the physical plane (excluding the
cylinder y = f,(x) at Re =30, We =0.5.
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